The impact of wean-quality scores on a post-weaning performance: a data driven approach

Edison Magalhaes, DVM MS PhD

Assistant Professor Department of Animal Science

Predictors of Swine Performance

Gebhardt et al.

					Weigh	nt, kg		
	Article	Country	Year	Number of pigs	Start	End	Significant factors ($P \le 0.05$)	
	Losinger et al. (1998)	USA	1995-1996	N/A	N/A	N/A	Weaning age	
							Source	
	Maes et al. (2001)	USA	1996-2000	1,345,127	N/A	N/A	Year	
							Timing within finishing	
	Maes et al. (2004)	Belgium	1999-2002	828,385	25	113	Season	
							Source	C
							Feeding duration	Source
	Larriestra et al. (2005a)	USA	1996-2000	1,720,040	23	N/A	Entry weight	
							Days on feed	Sow Farm
							Season	30 w i aim
	Oliveira et al. (2007)	Spain	1996-1997	120,751	18-20	N/A	Farm type	
							Herd size	
							Season	
							Feeding duration	
	Oliveira et al. (2009)	Spain	1999-2002	158 batches	N/A	N/A	Quality of care	
							Source	>
							Season	
							Year	
	Agostini et al. (2013)	Spain	2008-2010	1,157,212	19	108	Season	
							Number of pigs placed	
							Number of sources	•
							Circovirus vaccine	
							Antibiotic route	
							Water source	
	Serrano et al. (2014)	Spain	2003-2005	42 farms	N/A	N/A	Presence of viral antibodies	
							Farm type	
	Agostini et al. (2014)	Spain	2008-2009	454,855	20	104	Season	
							Number of sources	
							Ventilation type	
							Initial bodyweight (IBW)	
							IBW × ventilation type	
							$IBW \times number of sources$	
	Agostini et al. (2015)	Spain	2008-2010	1,040,116	19	106	Season	
							Number of sources	
							Ventilation type	
0.11 1 1					_		Number of pigs placed	
Gebhardt et al.	Mehling et al. (2019)	USA	2015	115,213	7	115	Stocking density	

Quality Weaned Pig: A multifactorial approach

Key Points:

- Health as a Foundation: A healthy, stable sow herd is crucial for producing quality weaned pigs.
- Management: Proper farrowing house management and Day 1 pig care are essential for health.
- **Biosecurity**: Implement strict protocols to prevent disease spread and maintain herd stability.
- Immunization: Proper vaccination protocols for both sows and piglets, Good colostrum intake, and Optimal age and weight at weaning.

Adapted from PIC article: "Quality Weaned Pig: Focus on Health"

Data-driven approach: Whole herd or Holistic analysis

මා field. epi

IOWA STATE UNIVERSITY

Building Master Tables (breeding-to-market)

IOWA STATE UNIVERSITY of science and technology

Sow farm importance on downstream mortality

\uparrow Farrowing rate associated with \downarrow W2F mortality

\uparrow Pre-weaning mortality e associated with \downarrow W2F mortality

MAST

Sow farm health importance on downstream mortality

IOWA STATE UNIVERSITY of science and technology

PRRS unstable groups ↑ W2F mortality

PRRS status equivalent to new "IA" - \uparrow W2F mortality

IOWA STATE UNIVERSITY of science and technology

PED groups weaned after the outbreak had higher nursery mortality

PED status 1: Epidemic PED status 2: Naïve

Whole-herd risk factors of wean-to-finish mortality

Estimated W2F Mortality

Overarching hypothesis: Implementation of machine-learning algorithms in swine data could improve the characterization of groups of pigs starting in the post-weaning phase.

Predicting nursery mortality using the wean-quality score

IOWA STATE UNIVERSITY

Creating a Wean-Quality-Score (WQS)

Table 2: Overall performance of the ML models on classifying the groups` 60-day mortality.								
Performance	Machine Learning Model							
Parameter*	RF	SVM	GBM					
ACC	0.9070	0.8140	0.8663					
Se	0.8462	0.6964	0.7500					
Sp	0.9248	0.8368	0.9015					
PPV	0.7674	0.4535	0.6977					
NPV	0.9535	0.9341	0.9225					
* Performance on the ML models on the complete and unbalanced dataset after removing PRRS vaccine variable; ACC: accuracy; Se=Sensitivity; Sp=Specificity; PPV=Positive predictive								

value; NPV= Negative predictive value.

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY

Magalhaes et al. (PVM)

Creating a Wean-Quality-Score (WQS)

Magalhaes et al. (PVM)

Creating a Wean-Quality-Score (WQS)

Discussion & take homes

- A Wean-Quality Score (WQS) was developed using ML.
- The WQS demonstrated a high accuracy for classifying high 60-day mortality groups.
- Random forest outperformed the other ML models.
- The most influential factors in predicting high 60-day mortality included:
 - Pre-weaning mortality
 - Average parity of litters
 - Stocking density

- Weaning age
- PRRS status
- Time to fill the barn.

IOWA STATE UNIVERSITY of science and technology

Sin fieldepi.org

Solutions for swine health & productivity

Thank you!

Edison Magalhaes, DVM, MS, PhD Assistant Professor edison@iastate.edu

National Institute of Food and Agriculture

U.S. DEPARTMENT OF AGRICULTURE

Competitive Grant no. 2022-68014-36668